Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical, structural, and magnetic properties of p-type InMnP: Zn implanted with the Mn (1 and 10 at.%)

Identifieur interne : 001337 ( Chine/Analysis ); précédent : 001336; suivant : 001338

Optical, structural, and magnetic properties of p-type InMnP: Zn implanted with the Mn (1 and 10 at.%)

Auteurs : RBID : Pascal:07-0473845

Descripteurs français

English descriptors

Abstract

The p-type InP:Zn was prepared by the liquid encapsulated Czochralski method and subsequently implanted with Mn+ of 5 x 1015 cm-2 (1 at.%) and 5 x 1016 cm-2 (10 at.%). The results of energy dispersive X-ray showed that the concentrations of Mn incorporated into InP:Zn is about 1 and 10 at.%. For photoluminescence measurements, the Mn-related optical transitions of the InMnP:Zn samples annealed at 350 °C for 60 s and at 450 °C for 30 s with Mn (1 at.%) were broadly observed at the energy region around 1.0 eV. The InMnP:Zn samples implanted with Mn (1 at.%) clearly showed ferromagnetic hysteresis loops at 10 K, and the ferromagnetic behavior was observed to persist up to 291 K. Curie temperature (TC) at 291 K has originated from MnP. The InMnP:Zn samples implanted with Mn (10 at.%) were annealed at 350 °C for 60 s and at 450 °C for 30 s. Using transmittance electron microscopy, both single crystalline and polycrystalline structures containing MnP and InMn3 sized ∼20 nm were observed depending on the annealing condition. These samples exhibited two different Curie temperatures: TC1 at 291 K and another (TC2) well above 291 K. The high-temperature ferromagnetic behavior up to TC1 and above TC2 is believed to have originated from two magnetic MnP and InMn3 phases, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0473845

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical, structural, and magnetic properties of p-type InMnP: Zn implanted with the Mn (1 and 10 at.%)</title>
<author>
<name sortKey="Shon, Yoon" uniqKey="Shon Y">Yoon Shon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Quantum-functional Semiconductor Research Center, Dongguk University</s1>
<s2>Seoul 100-715</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jeon, H C" uniqKey="Jeon H">H. C. Jeon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Quantum-functional Semiconductor Research Center, Dongguk University</s1>
<s2>Seoul 100-715</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Park, C S" uniqKey="Park C">C. S. Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Quantum-functional Semiconductor Research Center, Dongguk University</s1>
<s2>Seoul 100-715</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, H S" uniqKey="Kim H">H. S. Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Quantum-functional Semiconductor Research Center, Dongguk University</s1>
<s2>Seoul 100-715</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kang, T W" uniqKey="Kang T">T. W. Kang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Quantum-functional Semiconductor Research Center, Dongguk University</s1>
<s2>Seoul 100-715</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Sejoon" uniqKey="Lee S">Sejoon Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>institute of Industrial Science, University of Tokyo</s1>
<s2>Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<placeName>
<settlement type="city">Tokyo</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>JIN SOAK KIM</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Hanyang University</s1>
<s2>Seoul 133-791</s2>
<s3>KOR</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>EUN KYU KIM</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Hanyang University</s1>
<s2>Seoul 133-791</s2>
<s3>KOR</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Chong S" uniqKey="Yoon C">Chong S. Yoon</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Material Science and Engineering, Hanyang University</s1>
<s2>Seoul 133-791</s2>
<s3>KOR</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, C K" uniqKey="Kim C">C. K. Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Material Science and Engineering, Hanyang University</s1>
<s2>Seoul 133-791</s2>
<s3>KOR</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fu, D J" uniqKey="Fu D">D. J. Fu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Physics, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, X J" uniqKey="Fan X">X. J. Fan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Department of Physics, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430072</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0473845</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0473845 INIST</idno>
<idno type="RBID">Pascal:07-0473845</idno>
<idno type="wicri:Area/Main/Corpus">007305</idno>
<idno type="wicri:Area/Main/Repository">007385</idno>
<idno type="wicri:Area/Chine/Extraction">001337</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1098</idno>
<title level="j" type="abbreviated">Solid state commun.</title>
<title level="j" type="main">Solid state communications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Annealing</term>
<term>Curie point</term>
<term>Czochralski method</term>
<term>Dispersive spectrometry</term>
<term>Ferromagnetism</term>
<term>Indium phosphides</term>
<term>Ion implantation</term>
<term>Liquid encapsulation</term>
<term>Magnetic hysteresis</term>
<term>Magnetic properties</term>
<term>Magnetic semiconductors</term>
<term>Manganese sulfides</term>
<term>Optical transition</term>
<term>Photoluminescence</term>
<term>Zinc additions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété magnétique</term>
<term>Encapsulation liquide</term>
<term>Méthode Czochralski</term>
<term>Spectrométrie dispersive</term>
<term>Photoluminescence</term>
<term>Transition optique</term>
<term>Recuit</term>
<term>Hystérésis magnétique</term>
<term>Ferromagnétisme</term>
<term>Point Curie</term>
<term>Coefficient absorption</term>
<term>Implantation ion</term>
<term>Addition zinc</term>
<term>Indium phosphure</term>
<term>Manganèse sulfure</term>
<term>Semiconducteur magnétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The p-type InP:Zn was prepared by the liquid encapsulated Czochralski method and subsequently implanted with Mn
<sup>+</sup>
of 5 x 10
<sup>15</sup>
cm
<sup>-2</sup>
(1 at.%) and 5 x 10
<sup>16</sup>
cm
<sup>-2</sup>
(10 at.%). The results of energy dispersive X-ray showed that the concentrations of Mn incorporated into InP:Zn is about 1 and 10 at.%. For photoluminescence measurements, the Mn-related optical transitions of the InMnP:Zn samples annealed at 350 °C for 60 s and at 450 °C for 30 s with Mn (1 at.%) were broadly observed at the energy region around 1.0 eV. The InMnP:Zn samples implanted with Mn (1 at.%) clearly showed ferromagnetic hysteresis loops at 10 K, and the ferromagnetic behavior was observed to persist up to 291 K. Curie temperature (T
<sub>C</sub>
) at 291 K has originated from MnP. The InMnP:Zn samples implanted with Mn (10 at.%) were annealed at 350 °C for 60 s and at 450 °C for 30 s. Using transmittance electron microscopy, both single crystalline and polycrystalline structures containing MnP and InMn
<sub>3</sub>
sized ∼20 nm were observed depending on the annealing condition. These samples exhibited two different Curie temperatures: T
<sub>C1</sub>
at 291 K and another (T
<sub>C2</sub>
) well above 291 K. The high-temperature ferromagnetic behavior up to T
<sub>C1</sub>
and above T
<sub>C2</sub>
is believed to have originated from two magnetic MnP and InMn
<sub>3</sub>
phases, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1098</s0>
</fA01>
<fA02 i1="01">
<s0>SSCOA4</s0>
</fA02>
<fA03 i2="1">
<s0>Solid state commun.</s0>
</fA03>
<fA05>
<s2>144</s2>
</fA05>
<fA06>
<s2>3-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical, structural, and magnetic properties of p-type InMnP: Zn implanted with the Mn (1 and 10 at.%)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SHON (Yoon)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JEON (H. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PARK (C. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KIM (H. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KANG (T. W.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LEE (Sejoon)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>JIN SOAK KIM</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>EUN KYU KIM</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>YOON (Chong S.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>KIM (C. K.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>FU (D. J.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>FAN (X. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Quantum-functional Semiconductor Research Center, Dongguk University</s1>
<s2>Seoul 100-715</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>institute of Industrial Science, University of Tokyo</s1>
<s2>Tokyo 153-8505</s2>
<s3>JPN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Hanyang University</s1>
<s2>Seoul 133-791</s2>
<s3>KOR</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Material Science and Engineering, Hanyang University</s1>
<s2>Seoul 133-791</s2>
<s3>KOR</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Department of Physics, Wuhan University</s1>
<s2>Wuhan 430072</s2>
<s3>CHN</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA20>
<s1>128-133</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10917</s2>
<s5>354000143488830090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>20 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0473845</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state communications</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The p-type InP:Zn was prepared by the liquid encapsulated Czochralski method and subsequently implanted with Mn
<sup>+</sup>
of 5 x 10
<sup>15</sup>
cm
<sup>-2</sup>
(1 at.%) and 5 x 10
<sup>16</sup>
cm
<sup>-2</sup>
(10 at.%). The results of energy dispersive X-ray showed that the concentrations of Mn incorporated into InP:Zn is about 1 and 10 at.%. For photoluminescence measurements, the Mn-related optical transitions of the InMnP:Zn samples annealed at 350 °C for 60 s and at 450 °C for 30 s with Mn (1 at.%) were broadly observed at the energy region around 1.0 eV. The InMnP:Zn samples implanted with Mn (1 at.%) clearly showed ferromagnetic hysteresis loops at 10 K, and the ferromagnetic behavior was observed to persist up to 291 K. Curie temperature (T
<sub>C</sub>
) at 291 K has originated from MnP. The InMnP:Zn samples implanted with Mn (10 at.%) were annealed at 350 °C for 60 s and at 450 °C for 30 s. Using transmittance electron microscopy, both single crystalline and polycrystalline structures containing MnP and InMn
<sub>3</sub>
sized ∼20 nm were observed depending on the annealing condition. These samples exhibited two different Curie temperatures: T
<sub>C1</sub>
at 291 K and another (T
<sub>C2</sub>
) well above 291 K. The high-temperature ferromagnetic behavior up to T
<sub>C1</sub>
and above T
<sub>C2</sub>
is believed to have originated from two magnetic MnP and InMn
<sub>3</sub>
phases, respectively.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E60C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70E50P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H55H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété magnétique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetic properties</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Encapsulation liquide</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Liquid encapsulation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Encapsulación líquida</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Méthode Czochralski</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Czochralski method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spectrométrie dispersive</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Dispersive spectrometry</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espectrometría dispersiva</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Transition optique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Optical transition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Transición óptica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Hystérésis magnétique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Magnetic hysteresis</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Ferromagnétisme</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ferromagnetism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Point Curie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Curie point</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Implantation ion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Ion implantation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Addition zinc</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Zinc additions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Manganèse sulfure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Manganese sulfides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur magnétique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Magnetic semiconductors</s0>
<s5>17</s5>
</fC03>
<fN21>
<s1>309</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001337 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 001337 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:07-0473845
   |texte=   Optical, structural, and magnetic properties of p-type InMnP: Zn implanted with the Mn (1 and 10 at.%)
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024